ORIENT CEMENT LIMITED, DEVAPUR UNIT

(CK BIRLA GROUP

CII National Award for Excellence in Energy Management 2024

Mr. Satyabrata Sharma President – Manufacturing

Mr. Bala Giridhar Vice President-Works

Team Members

Mr. B.Pavan Kumar – GM (Mechanical) Mr. Devesh Raaj Panjiray- DGM (Process) Mr. P.Ramakrishna- Manager (Process)

ORIENT CEMENT LIMITED - PLANT PROFILE

OUR VISION & VALUES

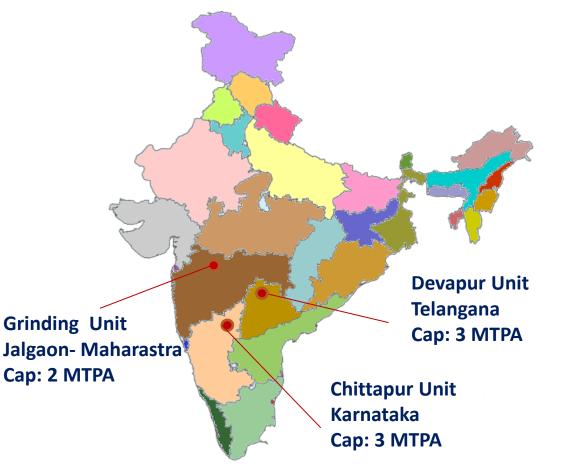
<u>Vision</u>

Build Sustainably to Be a Valued Partner in Progress.

<u>Values</u>

- Collaboration
- Humility to Learn
- Walk the Talk
- Respect for All
- Agility with Speed
- Passion to Excel
- Celebrate Diversity

Plant is certified with IMS:


- ISO 9001:2015
- ✤ ISO 14001:2015
- ISO 45001:2018
- ISO 50001:2018
- TPM-Phase I & II (Excellence and Excellence in consistent)
- NABL Accredited Quality Control Laboratory
- Member of CSI (WBCSD)
- Green Pro certified by CII
- Great Place to Work Certified 5th consecutive Year

Overall Capacity of Orient Cement is 8.0 MTPA.

Orient Cement operating 3 Cement Plants in India:

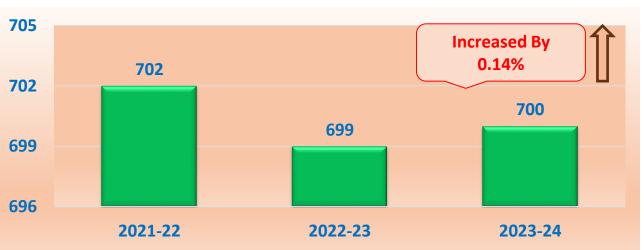
- Integrated Plant (incl:CPP) Devapur, Telangana
- Cement Grinding Unit Jalgaon, Maharashtra
- Integrated Plant (incl:CPP) Chittapur, Karnataka

PRODUCT DETAILS

CAPACITY ENHANCEMENT – DEVAPUR UNIT

Great Place To Work。 Certified

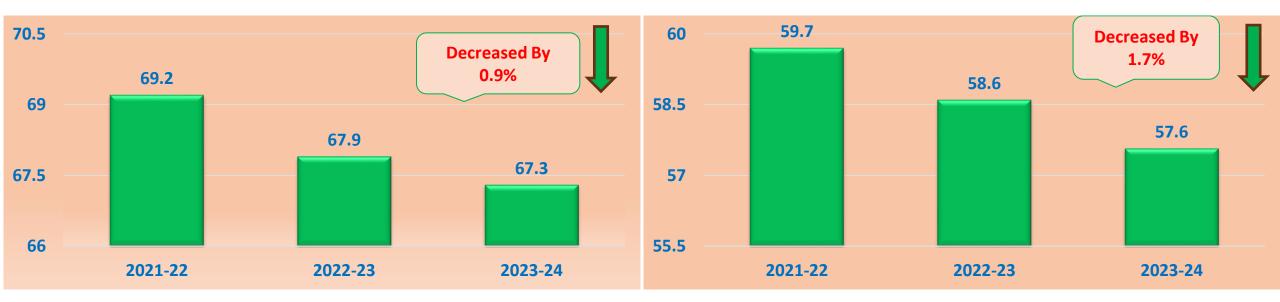
								Ŵork₀
1982	2	1990	1997		1999	20	09	Certified MAR 2024-MAR 2025 INDIA
Plant Cap.: 0.45 MTPA		Plant Cap.: 0.90 MTPA	Plant Cap.: 1.18 MTPA		Plant Cap.: 1.75 MTPA		Сар.: ИТРА	
Line-I Pla Commission		Line-II Plant Commissioned	Line - I ,Internal modifica	ation	Line I, Up gradation with PC	Line – III Co	ommissioned	CPP-50 MW Installation
Section		Line-1			Line-2			Line-3
Raw Mill	1ill Capacity - 240 TPH		Inregrinder Canacity - 160 LPH		Finished mode Capacity -300	e Roller press TPH Make : KHD		
Coal Mill	Ball Mill (Kiln Firing) VRM (PC Firing)				VRM Capacit Make : Pfeiffe	•		
Pyro Process	Suspension Pre heater with Separate Line Calciner. Rotary Kiln with Grate Cooler (Folex Cooler) Capacity -3600 TPD Make: FLS . Plant Commissioned in 1982 and upgraded in 1999		Calciner.Line CalcinerRotary Kiln with Grate CoolerRotary KilnCapacity -2800 TPDCapacity -4Make: KHD.Make: FLS		Line Calciner. Rotary Kiln wi Capacity -420 Make: FLS	ension Pre heater with In th SF Cross Bar Cooler 0 TPD sioned in 2009		
	Ball Mill with Roller Press as Pre Grinder, Capacity: 260 TPH Aill Make : Roller Press : KHD		Capaci	ill with Roller Press as Pre G ity - 230TPH : Roller Press & Ball Mill : Kl			- 4	



LAST THREE YEARS ENERGY PERFORMANCE

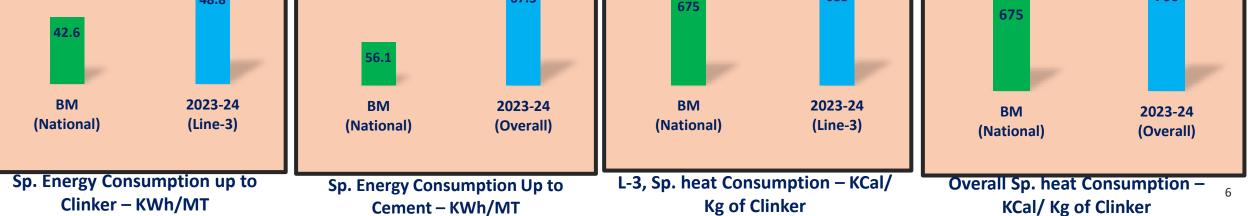
Great Place To Work. Certified MAR 2024-MAR 2025

Specific Heat Consumption Common – Kcal/ Kg Clinker



Sp. Power up to cement Common (Kwh/ MT)

Sp. Power up to PPC (Kwh/ MT of Cement)



INFORMATION ON COMPETITORS, NATIONAL & GLOBAL BENCHMARK

CEMENT				
Parameters	Electrical SEC	Thermal SEC		
SEC (Specific Energy Consumption) of the Unit	67.3	700		
Unit of Measurement	kWh/MT Cement	Kcal /Kg Clinker		
Name of Competitor I	Maratha Cement Works	UTCL- Baga Cement Works		
SEC Values for Competitor I	75.68	706		
Name of Competitor II	UTCL- Baga Cement Works	Chettinad – Kallur Works		
SEC Values for Competitor II	67.4	728		
Name of Competitor III	M/s Dalmia Bharath Ltd- Dalmiapuram	M/s Ramco Cements Ltd Jayanthipuram		
SEC Values for Competitor III	66.0	733		
	NATIONAL BENCHMARK			
Name of the Company	Plant-1	Plant-1		
SEC Value	56.1	675		
Unit of Measurement	kWh/MT Cement	Kcal /Kg Clinker		
Difference with National Benchmark Company	11.2	25		
Reference:-	ENERGY BENCHMARKING for the Indian Cement Indust	ry (CII) V 6.0 and year 22-23 CII Award Presentation		
	67.3 6.1 8M 2023-24 BM 2	683 675 700		

ROAD MAP FOR REDUCTION OF ENERGY CONSUMPTION

- 1. Installation of energy saving device in split of packaged AC units.
- 2. Installation of energy efficient pump sets/VFD to pumps.
- 3. Install roof top solar PV for buildings.
- 4. Install waste heat recovery system.
- 5. Installation of BLDC fans to replace conventional ceiling fans.
- 6. Replace IE1 motors with energy efficient IE3 motors (energy efficient motors replacement for selected motors).
- 7. Replacement of existing cooler with latest generation cooler in line-1 & 2.

ENERGY CONSERVATION PROJECTS PLANNED IN FY 2024-25

S. No	Energy Saving Proposals	Electrical energy saving per annum (Million kWh)
1	Installation of Waste Heat Recovery System	27714
2	Installation of Roof top Solar PV for buildings	339
3	Installation of MV drive in place of GRR for VRM-3 Vent Fan	705

Achieve BM

7

ENERGY SAVING PROJECTS IMPLEMENTED IN FY 2021-22

Great Place To Work。

				WORK _®
Energy saving projects	Investments (INR Million)	Electrical Savings (Million kWh)	Savings (INR Million)	Certified MAR 2022-MAR 2025 (Electrical kWh /MT cement or Kcal/Kg cement)
Kiln-1, Kiln feed Kiln & PC mixing bin venting modification (Bag filter stopped)	0.010	0.044	0.174	0.021
Optimization of Kiln-1 kiln feed extraction (feeding only single silo)	0.000	0.204	0.814	0.095
Installation of VFD for Kiln-1 Main ESP Fan and Motor changed from HT (225 kW) to LT (200 kW).		0.317	1.267	0.148
Line-1 Cooler fan-2B outlet duct modification.	0.200	0.222	0.887	0.104
Clinker hopper dust collector discharge modification in CementMill-1 (two blower are stopped)	0.120	0.067	0.269	0.031
Line-2 Cooler fan-1 Relocation for outlet duct modification & VFD installation	0.500	0.230	1.030	0.108
Line-2 Cooler fan-2 VFD installation	0.500	0.333	1.501	0.156
Total Savings	1.832	1.415	5.660	0.662
	 Kiln-1, Kiln feed Kiln & PC mixing bin venting modification (Bag filter stopped) Optimization of Kiln-1 kiln feed extraction (feeding only single silo) Installation of VFD for Kiln-1 Main ESP Fan and Motor changed from HT (225 kW) to LT (200 kW). Line-1 Cooler fan-2B outlet duct modification. Clinker hopper dust collector discharge modification in CementMill-1 (two blower are stopped) Line-2 Cooler fan-1 Relocation for outlet duct modification & VFD installation Line-2 Cooler fan-2 VFD installation 	Energy saving projects(INR Million)Kiln-1, Kiln feed Kiln & PC mixing bin venting modification (Bag filter stopped)0.010Optimization of Kiln-1 kiln feed extraction (feeding only single silo)0.000Installation of VFD for Kiln-1 Main ESP Fan and Motor changed from HT (225 kW) to LT (200 kW).0.500Line-1 Cooler fan-2B outlet duct modification.0.200Clinker hopper dust collector discharge modification in CementMill-1 (two blower are stopped)0.120Line-2 Cooler fan-1 Relocation for outlet duct modification & VFD installation0.500Line-2 Cooler fan-2 VFD installation0.500	Energy saving projects(INR Million)(Million kWh)Kiln-1, Kiln feed Kiln & PC mixing bin venting modification (Bag filter stopped)0.0100.044Optimization of Kiln-1 kiln feed extraction (feeding only single silo)0.0000.204Installation of VFD for Kiln-1 Main ESP Fan and Motor changed from HT (225 kW) to LT (200 kW).0.5000.317Line-1 Cooler fan-2B outlet duct modification.0.2000.222Clinker hopper dust collector discharge modification in CementMill-1 (two blower are stopped)0.1200.067Line-2 Cooler fan-1 Relocation for outlet duct modification & VFD installation0.5000.230Line-2 Cooler fan-2 VFD installation0.5000.333	Energy saving projects(INR Million)(Million kWh)(INR Million)Kiln-1, Kiln feed Kiln & PC mixing bin venting modification (Bag filter stopped)0.0100.0440.174Optimization of Kiln-1 kiln feed extraction (feeding only single silo)0.0000.2040.814Installation of VFD for Kiln-1 Main ESP Fan and Motor changed from HT (225 kW) to LT (200 kW).0.5000.3171.267Line-1 Cooler fan-2B outlet duct modification.0.2000.2220.887Clinker hopper dust collector discharge modification in CementMill-1 (two blower are stopped)0.1200.0670.269Line-2 Cooler fan-1 Relocation for outlet duct modification & VFD installation0.5000.3331.501

ENERGY SAVING PROJECTS IMPLEMENTED IN FY 2022-23

Great Place To Work。

Year Energy saving projects Investments Electrical Savings Savings (Elec	Act on SEC/ trical kWh /MT ent or Kcal/Kg cement)
FY 2022-23 VFD installation in Kiln-3 Coal Conveying blower 0.100 0.032 0.191	0.015
	0.015
FY 2022-23Kiln-1 PC firing Coal conveying blower Discharge Line Modification0.0200.0320.191	0.015
FY 2022-23RM-2 Silo Top Air Slide Blower Air Pipeline Modification0.0200.0290.182	0.014
FY 2022-23VFD Installation in Packer-3 Old Dust collector.0.1800.0400.240	0.019
FY 2022-23Optimization of Raw Mill 3 SKS fan during the High clinker stock management0.0000.2881.580	0.141
FY 2022-23Raw mill 1 Vent Fan Motor changed from 250kW to 200kW and System optimized.0.0200.0790.480	0.039
FY 2022-23K-string, Kiln Feed Air Slide Blower discharge line modification in Line 10.0300.0110.070	0.005
FY 2022-23Idle running of Separator gear box oil cooling water pump avoided in CementMill-10.0000.0100.060	0.005
FY 2022-23Grinding media optimization in Cement Mill-10.0000.8895.340	0.434
Total Savings 0.391 1.409 8.451	0.689

ENERGY SAVING PROJECTS IMPLEMENTED IN FY 2023-24

Great Place To Work。

Year	Energy saving projects	Investments (INR Million)	Electrical Savings (Million kWh)	Savings (INR Million)	Impact on SEC/ (Electrical kWh /MT cement or Kcal/Kg cement)
FY 2023-24	Reduction of Inlet Air temperature of compressors by providing duct	0.030	0.013	0.094	0.006
FY 2023-24	Replacement of RM1 Polycom DC IE1 motor with energy efficient IE3 motor	0.120	0.016	0.111	0.008
FY 2023-24	Remote operation of additive circuit in Rawmill- 1&2	0.276	0.036	0.249	0.017
FY 2023-24	Installation of Sensor based Drain Valves in compressed air circuit	0.410	0.195	1.364	0.094
FY 2023-24	Isolation of Fly ash steel silo dust collector	0.300	0.018	0.828	0.009
FY 2023-24	Water spray in PH downcomer duct in Line3 during Raw mill stoppage	0.000	0.054	0.378	0.026
FY 2023-24	Installation of VFD for Line1 Rice husk feeding Belt conveyor	0.000	0.024	0.168	0.012
FY 2023-24	Isolation of Fly ash BE dust collector	0.150	0.017	0.916	0.008
FY 2023-24	Replacement of Convectional light fittings with LED fittings	3.221	0.158	1.109	0.076
	Total Savings	4.507	0.531	5.216	0.255

Inlet/ Suction air to the compressors is being taken in for compression at a temperature which is higher than ambient^{**} temperature. The basic Thumb rule behind providing cooler air to the compressor is that "Every 4°C rise in inlet air temperature results in a higher energy consumption by 1 % to achieve equivalent output".

Presently Hot air from the motor cooling fans is being directly sucked into the compressor. This air is at a higher temperature than the ambient temperature.

Action Taken:

Line-3 IR-132 , Packing plant IR-MM55 & Compressor & Carbon black IR55 Compressor suction filter for intake air at ambient temperature work completed which resulted reduction in inlet air temperature.

Great

Place

Certified

To Work_a

Savings calculation:

Name/Tag		Packing Plant	Line-3	Carbon Black Compressor
Capacity	cfm	325	788	360
Power	kW	55	132	55
Model no		IR-55	MM-132	IR-55
Inlet Air Temp	⁰ C	30.1	27.5	27.5
Actual inlet Air Temp	0C	34.2	29.5	29.5
DT	0C	4.1	2	2
Ambient temp	⁰ C	27	27	27
%Saving	%	1.02	0.5	0.5
Annual Saving	kWh	5200	5632	2540
Saving cost	INR	36400	39424	17780
Total Savings INR in Lacs		0.94 (Total kWl	h * Power cost Rs	s/Unit, 13370*7)

Benefits:

The annual savings is INR 0.94Lakh. The investment amount for this is INR 0.3 Lakhs which have a payback period of 4 months.

Replacement of IE1 motors with energy efficient IE3 motors

Problem & Observation:

The plant has motive power as the highest contributor to energy consumption. The motors are presently in IE1 to IE2 MAR 2024-MAR 2028 Rating along with multiple motors of conventional non-IE class ratings. These motors have been re-wound and operating at a lower efficiency due to ageing and rewinding. Action Taken:

We have replaced Polycom Dust collector old motor with IE3 motor.

Before Power Consumption	After Power Consumption	Savings
21 kWh	19 kWh	2 kWh
Savings	48 kWh	
Annual	15840 kWh	
Annual S	110880 Rs.	
Moto	120000 Rs	

Benefits:

The annual savings is INR 1.11 Lakh. The investment amount for this is INR 1.20 Lakhs which have a payback period of 13 months.

Great

Place

To Worka

Line 1 & 2 Raw Mill additive circuit has been operated in Local mode, observed idle running in all drives.

Action Taken:

Upgraded power feeder remote provision provided in LT drives.

Before Power Consumption	After Power Consumption	Savings
34.8 kWh	24.9 kWh	9.9kWh
Avg 12 Hours F	118 kWh	
Annual	35640 kWh	
Annual S	avings Rs	249480 Rs.

Benefits:

The annual savings is INR 2.49 Lakh. The investment amount for this is INR 2.76 Lakhs which have a payback period of 13 months.

Compressed air drain valves are used for ejection of Condensate from the air receivers or air lines. In present system,^{MAR 2} Timer based valves are used to drain the condensate.

Action Taken:

Condensate ejection should be done based on the presence of condensate inside the system. Timer based valves don't consider the presence of moisture/Condensate in the receiver or line. Ejection simply happens every 20 s with or without water. We have installed sensor-based drain valves which will sense the presence of water/condensate in the system and only then eject it out of the system. Working of this system is like that of a steam trap wherein ejection happens only when water has accumulated.

Out of 100 Drain valves ,41 drain valves are replaced by sensor based heavy duty auto drain valves.

Calculations:

Power savings	= 0.6x41x7920
	=1,94,832
Cost savings	=1,94,832 x 7.0
Total savings	= 13.64 lakhs
Investment	= 4.10 lakhs
Benefits:	

The annual savings is INR 13.6 Lakh. The investment amount for this is INR 4.10 Lakhs which have a payback period of 4 months.

Great

Place

Certified

To Work₀

Great Place To Work Certified

Frequent jamming of Fly ash steel silo DC hopper and tripping of Fly- ash BE while emptying the dust collector due to mar 2024 MAR 2025 flushing of material. Unable to take the BE maintenance for sufficient time due to DC discharge connected to Bucket Elevator.

Action Taken:

New Vent line provided from Fly ash steel silo to Fly ash RCC silo Vent Dust collector and Steel silo DC isolated.

Before Power Consumption	After Power Consumption	Savings
2.77kWh	0	2.77kWh
Running Hour	55.4 kWh	
Annual Elect	18282 kWh	
Annual Electric	1.28 Rs.in Lacs	
Annual Maintenance	70000	
Total Annual Sav	8.28	

Benefits:

The annual savings is INR 8.28 Lakh. The investment amount for this is INR 3.0 Lakhs which have a payback period of 04 months.

Great Place To Work Certified Mar 2024-Mar 2025

Not able to do continues water spray in PH down comer duct due to coating formation in duct and operation problem. Not where is energy saving by doing water spray while RM3 stoppage by decreasing RABH & PH fan speed. Action Taken:

We started water spray in PH down comer duct while RM3 stoppage which resulted in power saving of 200kWh

Before Power Consumption	After Power Consumption	Savings
530	330	200kWh
Running Hours	1400 kWh	
Annual Elect	54000kWh	
Annual Electric	3.78 Rs.in Lacs	
Total Annual Sav	3.78	

Benefits:

The annual savings is INR 3.78 Lakh. The investment amount for this is Nil which have a payback of immediate.

Great Place To Work。 Certified MAR 2024-MAR 2025 INDIA

Not able to run the rice husk feeding continuously due to uneven load of material causes CO generation in PC. <u>Action Taken:</u>

VFD installed for Rice husk feeding belt conveyor drive and speed reduced from 1480 to 150 to 200RPM .

Before Power Consumption	After Power Consumption	Savings
7.5kWh	3.5	4.0kWh
Running Hour	55.4 kWh	
Annual Elect	24000kWh	
Annual Electrica	1.68 Rs.in Lacs	
Total Annual Sav	1.68	

Benefits:

The annual savings is INR 1.68 Lakh. The investment amount for this is Nil, which have a payback of immediate.

Frequent jamming of RCC fly ash bucket elevator& air slide venting dust collector. Action Taken:

Fly ash bucket elevator venting got isolated by providing additional vent lines to the RCC fly ash silo top bag filter.

Before Power Consumption	After Power Consumption	Savings
2.5kWh	0	2.5kWh
Running Hour	55.4 kWh	
Annual Elect	16500kWh	
Annual Electric	1.15 Rs.in Lacs	
Equipment &	8.0	
Total Annual Sav	9.15	

Benefits:

The annual savings is INR 9.15 Lakh. The investment amount for this is INR 1.5Lakhs which have a payback period of 02 months.

Great

Place

Certified

To Work₀

The Plant is presently in the process of upgrading is lighting to energy efficient lighting in the LED technology. However the rate of replacement must be increased to get a greater benefit.

Action Taken:

Rate of replacement of Lighting to Led should be increased to get the benefit of the present technology. We have been replacing conventional lighting with LEDs at all locations in the plant.

Before Power Consumption	After Power Consumption	Savings
109.5kWh	66.1	43.4kWh
Running Hour	434 kWh	
Annual Elect	154810kWh	
Annual Electric	11.09 Rs.in Lacs	
Investmer	nt cost Rs.	32.2 Rs. in Lacs

Benefits:

The annual savings is INR 11.09 Lakh. The investment amount for this is INR 32.2 Lakhs which have a payback period of 35 months.

Great

Place

Certified

To Work。

INNOVATIVE PROJECTS IMPLEMENTED

INSTALLATION OF RAW MEAL TRANSFER LINE FROM LINE 2 TO LINE 3

Problem & Observation:

We observed now a days (Fixed roller Profile dislodged frequently) Raw Mill production capacity is bottle neck for clinker production in Kiln 3.

Action Taken:

We installed raw meal transfer system near raw meal silo 2 that is transfer material from line 2 raw meal silo to raw meal 3 silo.

Benefits:

Smooth operation of Kiln 3 with high productivity.

Great

Place

Certified

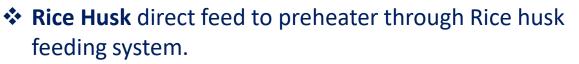
To Work

INSTALLATION OF COAL CONVEYING SYSTEM FROM COALMILL-1 TO VRM-1

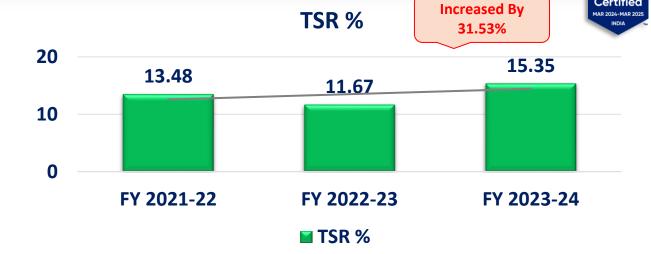
Problem & Observation:

To convey fine coal from coal mill bin to VRM bin, to take leisure time of VRM maintenance which avoids the stoppage of Line-1 in critical / emergency.

Action Taken:


We installed coal conveying system from Coal mill-1 to VRM-1. Fine coal of 10TPH is being conveyed daily.

Benefits:


VRM-1 breakdowns reduced as time is being given for maintenance which was not possible earlier.

- Carbon Black direct feed in coal mill through carbon black dense phase system.
- Recovered waste mixed with rice husk.
- Hazardous Waste mixed with raw coal.
- Cotton stalk, Coconut Fiber, Wood chips direct feed to the preheater system.
- Municipal Waste mixed with rice husk.

S. No	FY	Waste as fuel	Quantity (MT)	GCV (Kcal/kg)	Waste as percentage of total fuel	TSR %
1	FY 2021-22	Biomass (MT/year)	44703	3312	7.72 %	
2		Solid waste (MT/year)	16654	5777	5.37 %	13.48
3		Liquid Waste (MT/year)	2642	2820	0.39 %	
4	FY 2022-23	Biomass (MT/year)	22196	3310	4.34 %	
5		Solid waste (MT/year)	19019	5718	6.13 %	11.67
6		Liquid Waste (MT/year)	5494	3646	1.19 %	
7	FY 2023-24	Biomass (MT/year)	57133	3302	9.44%	
8		Solid waste (MT/year)	15498	6067	5.03%	15.35
9		Liquid Waste (MT/year)	4488	3645	0.88%	23

Great Place To Work。 Certified

WASTE UTILIZATION AND MANAGEMENT

Husk

Great Place To Work.

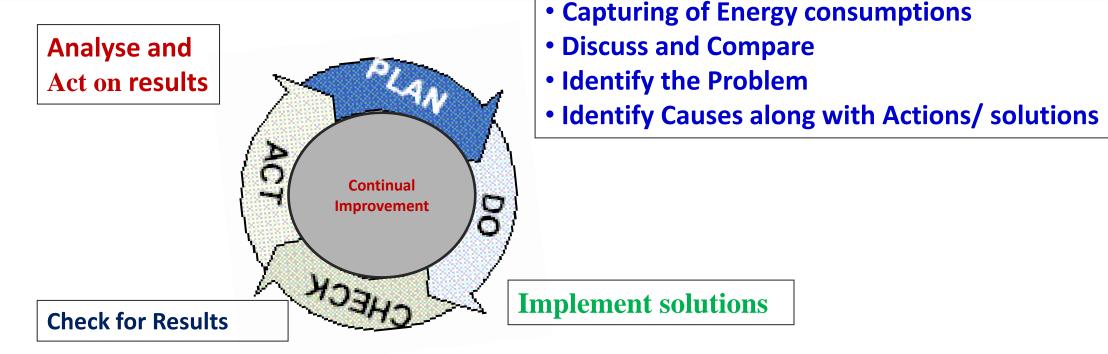
LAFR System in Line-3

Recovered Waste

Line -3's 5 TPH Rice husk feeding system installed in Line-2 Old carbon black system

New carbon black system

Mixed Rice


Enhance capacity of Line-3 Rice Husk system (5 TPH to 15 TPH)

24

IMPLEMENTATION & REVIEW PLAN

A special team has been designated for monitoring of Energy consumptions. Electrical as well as Thermal consumption is been monitored on daily basis and highlighted to down the level. The daily Energy consumptions of concerned departments are discussed during daily review meeting. Actions and brainstorming are done based on actual vs targets.

TEAMWORK, EMPLOYEE INVOLVEMENT & MONITORING

List of active members of Energy Management Cell within the organisation:

- 1. Mr. Atul Kumar Agrawal (EA-11170)
- 2. Mr. Devesh Raaj Panjiray
- 3. Mr. Sameer Gandhi
- 4. Mr. Vijaypal Ratna
- 5. Mr. Goutham
- 6. Mr. P. Ramakrishna (EA-34984)
- 7. Mr. A.Thirupathi
- 8. Mr. Shailesha Rajawat (EM-300528)
- 9. Mr. B.Raghu

Responsibilities of Energy Manger:-

- a) Planning and Conducting Energy review meetings
- b) Energy monitoring activities.
- c) EnMS ISO 50001, Documentation and compliance to standard.
- d) Energy conservation projects
- e) Conducting periodical Energy Audits
- f) Create Awareness & training to employees on Energy conservation activities.
- g) Compliance to PAT schemes etc.

Energy Management Activities:-Activities are monitoring of section wise and main motors electrical consumption, Monitoring Thermal energy consumptions, Heat balance, Leakage monitoring, Suggesting new energy efficient equipments and modifications, Explore usage of alternative fuels, Conduct energy audits, awareness & training etc.

Great

Place

Certified

MAR 2024-MAR 2025

INDIA

To Work_a

GHG INVENTORISATION

Great Place To

CEMENT

(CK BIRLA CROUP **Scopes for CO2 reduction** 3 HILL STORE BIRLA-A1 **Reduction of** Increase PPC, Increase Renewable Process SC+PSC/ **Energy consmn** usage % of & WHR optimization through - ENCON PCC mix AFR Energy Idea's proportion CO₂ Kg/MT of Cement 800 600 655 648 able 595 pment \cap 400 Climate change 200

FY 2021-22 FY 2022-23 FY 2023-24

nvironment

ORIENT CEMENT LIMITED
CORPORATE POLICY ON CARBON FOOTPRINT REDUCTION
Orient Cement Limited committed towards climate change, explore, adoption of technologies and
input processing materials which reduce carbon footprint,

Identify and implement low carbon technology and processes across all the Plants.
Identify and implement low carbon footprint numbers and new plans identify, plan and to reduce
future Carbon footprint numbers.

- ✓ Adopt aggressive abatement actions to reduce life cycle footprint and drive growth through best practices and innovation.
- ✓ Identify and implement on continuous sustainability projects.
- Awareness, knowledge sharing of best practices towards reduction of impact of climate change and adherence to Global warming temperature below 2°C.

SATYABRATA SHARMA PRESIDENT - MANUFACTURING

ENERGY MANAGEMENT SYSTEM

Great Place To Work₀

ORIENT CEMENT : DEVAPUR

-	ID/	BINE AND	
		in the second	
		ALC: NO	
110		The second se	P
The state of the s	-	AL M AM	

Since Add		DAILY POWER REPORT Date: 18-Apr-23												
3965 111	ON DATE						MONTH TO DATE							
In Subble	EQPT./SEC.	UNITS	PROD	R.Hrs.	RATE	LOAD	* SP.EN	JERGY	UNITS	OUTPUT	Run.	RATE	LOAD	SP.
C. S. A. M. M. M.	NAME	KWH	TONS		TPH	KW	ACT.	target	KWH	TONS	Hrs	TPH	KW	ENGY
and the second se	MINES AUXILARY	5908					0.47	0.2						
Energy	LS CRUSHER TOTAL	16057					1.27	1.3						
Management	LSC-3	21965	12609	12.5	1009	1757	1.74	1.50	364723	233186	229	1019	1594	1.56
system installed for	RM-1 Total	110427	5568	24.0	232	4601	19.83	18.20	1869219	95903	403	238	4643	19.49
online	KILN -1 Total	85605	3585	24.0	149	3567	23.88	24.00	1554552	64404	432	149	3599	24.14
capturing of all	CM-1 Total	70381	3082	12.6	245	5595	22.84	24.65	1121793	45780	200	229	5604	24.50
Energy	RM-2 Total	86511	4032	24.0	168	3605	21.46	20.50	1511181	66020	418	158	3612	22.89
consumption	KILN -2 Total	74052	2655	24.0	111	3086	27.89	27.20	1310224	47481	432	110	3033	27.59
details of Major	CM-2 Total	101883	3884	19.4	200	5246	26.23	29.45	2130512	81337	407	200	5237	26.19
fans, HT drives and	P.PLANT	9747	6822				1.43	1.55	176773	125236	0			1.41
above 75kW drives	RM-3Total	101186	5763	19.7	293	5144	17.56	16.70	1887341	109211	373	293	5064	17.28
different	KILN -3 Total	97363	4682	24.0	195	4057	20.80	20.40	1585981	73788	384	192	4127	21.49
departments and specific energy usages.	COLONY	8890							147610					
	TOTAL POWER	772410							13798030					
	UP TO CLINKER (av	verage)					54.70		0					54.92
	UP TO CEMENT (a	verage)					78.53		0					79.00
	UP TO CEM. PPC (at	verage)					60.47		0					60.83
	UP TO CEM. HS PPC	(average)					0							79.15

CERTIFICATION & ENERGY POLICY

Great Place To Work

ORIENT

DNV

MANAGEMENT SYSTEM

CERTIFICATE

Certificate no.: 160095-2014-AQ-IND-RvA 160112-2014-AE-IND-RvA 10000322502.MSC.RvA.IND 24 August 2023 - 23 August 2026 24 August 2023 - 23 August 2026 24 August 2023 - 23 August 2026

This is to certify that the management system of **Orient Cement Limited**

P.O. Devapur Cement Works, Mancherial - 504218, Telangana, India N.H. No. 6, Nashirabad Village, Jalgaon - 425309, Maharashtra, India 5-9-22/57/D, 2nd, 3rd & 4th Floor, GP Birla Centre, Adarsh Nagar, Hyderabad - 500063, Telangana, India

and the sites as mentioned in the appendix accompanying this certificate

Initial certification date

09 April 1997

10 April 1999

24 August 2005

has been found to conform to the Integrated Management System standard: ISO 9001:2015 ISO 14001:2015 ISO 45001:2018

This certificate is valid for the following scope: Manufacture and supply of cement

Place and date

ilvadasan Madivati Management Representative

Lack of fulfiment of conditions as set out in the Certification Agreement may render this Certificate invalid

ACCREDITED UNIT: DNV GL Business Assurance India Private Limited, ROMA, No. 10, GST Road, Alandur, Channal, PN - 600 016, India

DNV

MANAGEMENT SYSTEM CERTIFICATE

Initial certification date: Certificate no. 210226-2016-AE-IND-RVA 09 February 2017

04 September 2023 _ 23 August 2026 Expiry date of last certification cycle: 3 August 2023 Date of last re-certification

This is to certify that the management system of **Orient Cement Limited**

P.O. Devapur Cement Works, Mancherial - 504218, Telangana, India and the sites as mentioned in the appendix accompanying this certificate

has been found to conform to the Energy Management System standard: ISO 50001:2018

This certificate is valid for the following scope: Manufacturing of Cement

ACCREDITED UNIT: DNV Business Assurance B.V., Zwoiseweg 1, 2904 LB, Barendrecht, Netherlands - TEL: +31(0)102922659, www.dnv.com/assurance

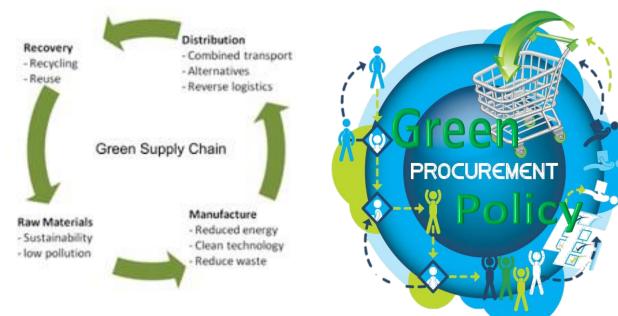
CEMENT

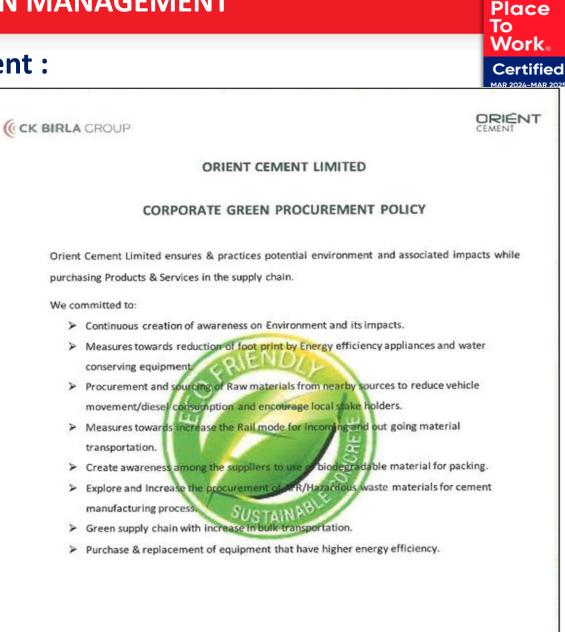
Orient Cement Limited aims to be a leading company by providing consistent quality products and customer satisfaction through capabilities building, use of best practices, reliable relationships with all stakeholders and innovative cement products with a commitment to maintain environment friendly, safe, healthy and sustainability working condition in all its operations.

We are committed to:

(CK BIRLA GROUP

- Operating the plant energy efficiently and increase the usage of alternative fuels & minimizing the energy losses;
- Complying applicable legal & other requirements;
- Protection of environment includes prevention of pollution by optimising the consumption, responsible sourcing, reuse and recycle;
- · Eliminating hazards, reducing risks and exploring opportunities by continual improvement of all processes to enhance the IMS performance, professional development and knowledge sharing;
- · Developing safety culture, safeguarding employees, workers, and their representatives from injury & ill health through their consultation and participation in safety assessment and adherence to PPE;
- Available information is utilised for enhancing objectives & targets with optimal resources.


SATYABRATA SHARMA President - Manufacturing



GREEN SUPPLY CHAIN MANAGEMENT

Future aspects for Green Supply Chain Management :

- Usage of Hazardous waste.
- Usage of agro based waste.
- Ideas towards reduction of Carbon emissions.
- Adoption of automation technologies.
- Safety standards and reliability
- Ban of single use plastic in Colony/Plant.
- ✤ Maximizing reverse logistics.

Great

'Net Zero Carbon Footprint' Target Commitment

Achieve "Net Zero Carbon" status by 2070.

Roadmap for achieving the target:

We pursue various levels as given below to achieve the target.

- Scope 1 emissions: The Company continuously pursues the following measures to reduce its Scope 1 emission:
 - Clinker factor reduction.
 - > Improving the product portfolio with more blended cement.
 - > Reduction of Specific Thermal and Specific Electrical Energy in the kiln and captive power plant.
 - Improvement in TSR 25% Thermal Substitution Rate (TSR) (substitution of fossil fuels by alternative ones).
 - > Improving the utilization of low-grade limestone.
 - > Migration towards renewable energy 50% of the total energy to come from renewable energy and Waste Heat Recovery Systems (WHRS).
 - Establishment of Waste Heat Recovery Systems 50% of the total energy to come from renewable energy and Waste Heat Recovery Systems (WHRS).
 - Collaborating closely with technology suppliers for developing secondary CO2 abatement technologies for Carbon Capture Utilization and Sequestration (CCUS).

•

Great

Place

Certified

To Work。

- Scope 2 emissions: The Company continuously pursues the following measures to reduce its Scope 2 emission.
 - Migration towards renewable energy 50% of the total energy has to come from renewable energy and Waste Heat Recovery Systems (WHRS).
 - Reduction in plant-specific electrical energy.
- Scope 3 emissions: Currently, the Company is working on the logistics' CO2 footprint by migrating towards bulk transportation, biofuels and electric vehicles.

We are exploring the possibility of getting our CO2 targets validated by SBTI in future.

- **We would like to thank CII Team to their efforts towards Energy initiatives.**
- We have learnt lot of things from CII award functions such as New Initiatives, New technology and new ideas which we had implemented in our Plant and got huge benefits in energy savings.
- CII Provided us Knowledge exchange platform, we shared our ideas, and we inspired from other competitors.
- We applied replacement of IE1 motors with energy efficient IE3 motors, replacement of Conventional lights with LED and installation of sensor-based drain valves in Compressed air receiver tanks in our plant got huge benefit.
- **We installed many VFDs and removed the Fan inlet dampers in different locations in our Plant.**

Great

Place

To Work。 Certified

WAYFORWARD:

INSTALL ROOF TOP SOLAR PV FOR BUILDINGS

Present Status:

Office Buildings in the plant have a potential for installation of Solar Panels on the rooftop in order to generate extra power that can feed the offices and buildings. The roof areas can be utilized in order to make the buildings self sufficient

Savings Calculation:

	Units	Technical Office	Admin Office	
Total approximate area available	m2	940	567	
Recommended solar PV plant	KWp	105	65	
Annual energy generated from SPV	MWH/year	211	128	
	339 MWH			
Annual Monetary cost Benefit	Rs/years	15.25 Lakhs		
Cost of SPV system	Rs	60.3 Lakhs		
Simple payback period	months	48		

Benefits:

The estimated annual Energy offset potential is INR 15.25 Lakh. The investment required for this is INR 60.3 Lakhs which will have a payback period of 48 months.

Great

Place

Certified MAR 2024-MAR 2025

To Work。

AWARDS & ACCOLADES

B

Great Place То Work

LEADERSHIP IS THE ABILITY TO TRANSLATE VISION INTO REALITY.

CONGRATULATIONS ON BEING NAMED ONE OF INDIA'S MOST TRUSTED LEADERS BY THE GREAT PLACE TO WORK® INSTITUTE (INDIA).

MR. DEEPAK KHETRAPAL MD & CEO -ORIENT CEMENT

Deloitte.

ivrate

Ninner 2

- Course

WE'RE WORK **ENVIRONMENT** CONSCIOUS TOO.

Great Place To Work recognises our endeavours in creating a workplace that fosters growth, innovation, and a strong commitment to sustainability.

INDIA 2024

PROUD TO BE A BEST MANAGED COMPANY

We are certified a great workplace yet again by

Great Place to Work® Institute, India

Great Place То Work_®

Certified MAR 2024-MAR 2025

AWARDS & ACCOLADES

APEX INDIA EXCELLENCE AWARD 2021 in the Category of "Platinum" for Energy Efficiency.

"GreenTech Energy Award 2021".

"Telangana State Energy Conservation Award-2021" received on 19th Dec 2021

YOUTUBE

AWARDS & ACCOLADES

Great Place To Work。

"Excellent Energy Efficient Unit Award 2023" received from "CII"

"Telangana State Energy Conservation Award-2023" received on 20th Dec 2023

